HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction

نویسندگان

  • Xing Chen
  • Chenggang Clarence Yan
  • Xu Zhang
  • Zhu-Hong You
  • Yu-An Huang
  • Gui-Ying Yan
چکیده

Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DRMDA: deep representations‐based miRNA–disease association prediction

Recently, microRNAs (miRNAs) are confirmed to be important molecules within many crucial biological processes and therefore related to various complex human diseases. However, previous methods of predicting miRNA-disease associations have their own deficiencies. Under this circumstance, we developed a prediction method called deep representations-based miRNA-disease association (DRMDA) predicti...

متن کامل

LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction

Predicting novel microRNA (miRNA)-disease associations is clinically significant due to miRNAs' potential roles of diagnostic biomarkers and therapeutic targets for various human diseases. Previous studies have demonstrated the viability of utilizing different types of biological data to computationally infer new disease-related miRNAs. Yet researchers face the challenge of how to effectively i...

متن کامل

PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction

In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important c...

متن کامل

GRMDA: Graph Regression for MiRNA-Disease Association Prediction

Nowadays, as more and more associations between microRNAs (miRNAs) and diseases have been discovered, miRNA has gradually become a hot topic in the biological field. Because of the high consumption of time and money on carrying out biological experiments, computational method which can help scientists choose the most likely associations between miRNAs and diseases for further experimental studi...

متن کامل

WBSMDA: Within and Between Score for MiRNA-Disease Association prediction.

Increasing evidences have indicated that microRNAs (miRNAs) are functionally associated with the development and progression of various complex human diseases. However, the roles of miRNAs in multiple biological processes or various diseases and their underlying molecular mechanisms still have not been fully understood yet. Predicting potential miRNA-disease associations by integrating various ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016